CURRICULUM FOR TWO-YEAR M. Tech. PROGRAM IN NAVAL ARCHITECTURE AND OCEAN ENGINEERING

First Semester

S. No.	Subject No.	Subject Name	L –	T –	Р	С	Hrs in a week
1.	NA50001	Introduction to Ships & Offshore Structures	3	2	0	3	5
2.	NA50003	Safety, Pollution Control and Stability	3	2	0	3	5
3.	NA50005	Ship Construction and Welding	3	2	0	3	5
4.	NA50007	Performance of Marine Vehicles – I	3	2	0	3	5
5.	NA50009	Strength of Ships and Offshore Structures	3	2	0	3	5
6.	NA50901	Industrial Seminar	0	0	3	2	3
7.	NA50701	Ship Drawing	0	0	3	2	3
8.	NA50703	Hydrodynamics Laboratory	0	0	3	2	3
9.	NA50801	Ship Structural Analysis Project	0	0	3	2	3
		TOTAL	15	10	12	23	

Second Semester

S. No.	Subject No.	Subject Name	L –	T –	Р	С	Hrs in a week
1.	NA50002	Ship Design	3	2	0	3	5
2.	NA50004	Ship Production	3	2	0	3	5
3.	NA50006	Performance of Marine Vehicles – II	3	2	0	3	5
4.		Elective – I	3	2	0	3	5
5.		Elective – II	3	2	0	3	5
6.	NA50902	Computer Software Laboratory	0	0	3	1	3
7.	NA50802	Design Project	0	0	12	6	12
		TOTAL	15	10	15	22	

Third Semester

S.No.	Subject No.	Subject Name	L –	T –	P	С	Hrs in a week
1		Elective - III	3	2	0	3	5
2		Elective - IV	3	2	0	3	5
3	NA50801	Comprehensive Viva-voce				3	
4	NA50901	Project -I				14	
		TOTAL	6	4	0	23	

Fourth Semester

S. No.	Subject No.	Subject Name	L - T - P	С	Hrs in a week
1	NA50902	Project - II		20	
		TOTAL		20	

TOTAL CREDITS FOR THE WHOLE COURSE

Electives I to IV

Subject No	Subject Name	L	Т	Р	С
DH50008	Hydrographic Survey	3	2	0	3
DH50010	Cargo Handling in Ports	3	2	0	3
DH50012	Engineering Economics	3	2	0	3
NA50008	CAD CAM in Ship Design & Production	3	2	0	3
NA50010	Marine Propulsion Machinery & Systems	3	2	0	3
NA50012	Design of Offshore Structures	3	2	0	3
NA50011	Advanced Structural Analysis	3	2	0	3
NA50013	Computational Fluid Dynamics	3	2	0	3
DH50011	Optimisation Methods	3	2	0	3
DH50013	Marine Management	3	2	0	3

Note: L = Lectures

- **T** = **Tutorials**
- **P** = **Practicals**
- **C** = **Credits**

SYLLABUS

Introduction to Ships & Offshore Structures

3 0 0 = 3 Credits

Ocean Environment - waves, tides and currents; Ocean Resources – oil and gas, mineral modules, energy, food source etc. Types of ships, Hull forms & its definitions; sectional area and moments; hydrostatics calculations; space allocation & general arrangement; weights & CG; Volume & capacities; GRT & NRT.

Types of offshore structures, Jacket & gravity platforms, jack-up, semi-submersible & drill ships, TLP, spar & guyed tower, submarine pipeline, deep water complaint platforms, FPSO & sub-sea production systems.

Safety, Pollution Control and Security

3 0 0 = 3 Credits

Flotation and trim; Stability at small angles; Free surface effects; Effects of lifting and movement of large masses on stability; Stability at large angles; Cross-curves of stability; Curves of statical stability; Dynamical stability; Subdivision and flooding; Stability in damaged conditions - lost buoyancy and added weight methods; Probabilistic Damage Stability; ILLC; Fire Prevention and Control in Ships and ports, Occupational Hazards and Use of PPEs, ISM; Formal safety assessment; Oil tanker safety and Pollution prevention; Pollution due to sewage and garbage; MARPOL; Air pollution; Pollution due to ballast water and its control; Security in Ports – ISPS code.

Ship Construction and Welding

3 0 0 = 3 Credits

Aspects of shipbuilding technology; Structural components - bottom construction, shell plating, decks, fore and aft peak construction, superstructure and deckhouses, bulkheads; Framing system; Structural continuity; Steel material preparation - shot blasting, acid pickling etc; Plate cutting methods; Plate and section forming - mechanical methods and line heating techniques; Fusion welding – types of power source and their characteristics, welding methods - MMAW, GMAW, SAW, Electro-slag welding; Welding parameters and their effect on welded joints; Welding distortions-causes and prevention; Welding defects; Nondestructive testing, Corrosion and its prevention.

Performance of Marine Vehicles - I

NA50003

NA50001

NA50007

NA50005

3 0 0 = 3 Credits

Components of ship resistance; Dynamic similarity; Froude hypothesis; Viscous resistance; Laminar and turbulent flows; Effect of roughness; Friction lines; Form resistance; Wave resistance; Kelvin wave pattern and waves generated by a ship; Wave interference; Air resistance; Appendage drag; Ship resistance in shallow water; Resistance data presentation; Estimation of effective power - methodical series and statistical methods- Hull form and resistance; High Performance Vehicles – Drag and propulsion.

Screw propeller geometry; Propeller theories; Laws of similarity for propellers; Propellers in "open" water; Propeller coefficients and design charts; Hull propeller interaction - wake, thrust deduction and relative rotative efficiency; Propulsive efficiency and its components; Propeller cavitation- Propeller blade strength; Propulsion experiments- Propeller design; Speed trials and service performance analysis; Unconventional propulsion devices.

Strength of Ships and Offshore Structures

NA50009

3 0 0 = 3 Credits

Materials of construction - properties and use

Forces acting on ship structure; Idealization of ship structure as hull girder; Longitudinal bending of hull girder – weight and buoyancy curves; Deflection, shear force and bending moment diagrams; Stresses in inclined conditions; Section modulus - Bending and shear stresses; Analysis of bulkheads and decks; Structural discontinuities and stress concentration; Analysis of beam and frame; Introduction to elasticity; Plane stress and plate bending problems.

Vibration induced in floating elastic structure like ship due to wave, propeller and machinery; Free and forced vibration of single degree of freedom system; Empirical formulae for the evaluation of frequencies in ship hull vibration; Free and forced vibration of multi-degree of freedom system; Vibration of a continuous system; Concept of added mass and its effect in ship hull vibration; Hull resonance diagram; Selection of engine and propeller based on vibration considerations, Vibration of machine shafts; Design of engine mounts.

Industrial Seminar

0 0 3 = 2 Credits

External experts are to give invited talk to students once a week. Students are to appear for a viva voce examination at the end of the semester for evaluation.

Ship Drawing

NA50701

NA50901

0 0 3 = 2 Credits

Lines plan drawing and computation of hydrostatics and stability of a given ship.

Mid-ship section drawing; Scantlings of different structural components as per the requirements of classification societies; Computation of section modulus.

Hydrodynamics Laboratory

0 0 3 = 2 Credits

Ship Model making; Calibration of dynamometer; Calm water resistance test and analysis; Propeller open water test and analysis; Model self-propulsion test and analysis; Experiment in regular waves. The experiments are to be organised based on tank testing facility available during the semester.

Ship Structural Analysis Project

0 0 3 = 2 Credits

A structural analysis project using available software or based on student's own numerical analysis technique

Ship Design

3 0 0 = 3 Credits

Engineering design - Philosophy and definition; Marketing principles in marine environment; Engineering economic criteria and complexities, operating cost, optimal vessel design; Properties of cargo; Design spiral, concept design, objectives and constraints, preliminary design; Hull form design and development; General Arrangement design - Space and volume layout, access arrangements; Shipbuilding cost estimation; Specifications, tendering and contract.

Ship Production

3 0 0 = 3 Credits

Overview of ship production systems – Shipbuilding process; Metal Manufacturing and Construction process – straightening, cutting, forming and welding, outfit process, materials handling; Shipyard layout; Information for shipbuilding production; Product standardization and work simplification- shipbuilding management – group technology – work breakdown; Product work breakdown and integrated zone engineering; Ship Design and Engineering; Planning, Scheduling and Production Control - linear programming concepts - network analysis - scheduling and resource allocation; Accuracy control; Developments in CAD/CAM and CIM in shipbuilding

Performance of Marine Vehicles -- II

NA50006

NA50004

NA50801

NA50002

NA50703

3 0 0 = 3 Credits

Regular surface waves and their properties; Irregular Waves – statistical representation, energy spectrum; Ship motions in regular waves: frequency of encounter, natural periods, RAO. Motions in irregular waves: response spectra. Derived responses: slamming, deck wetness, relative motions, seasickness; Design considerations for sea keeping; Motion Stabilisers.

Introduction to maneuverability, directional stability. Basic motion equations of a maneuvering body. Hydrodynamic and control derivatives; Various definitive maneuvers: turning, zigzag, spiral; Heel during turn. Experimental determination of hydrodynamic derivatives; IMO maneuvering standards; Rudder torque estimation and design.

Computer Software Laboratory

0 0 3 = 1 Credits

Student has to work out an assigned problem using software available in the laboratory.

Design Project 0 0 12 = 6 Credits

Student has to complete the design of an assigned ship or offshore structure and draw up specifications suitable for tendering.

Hydrographic Survey

3 0 0 = 3 Credits

Basic notions of surveying: survey requirements, survey scheduling, pre-survey planning, post-survey data analysis and review, Accuracy standards, quality control and quality assurances for navigation and dredging surveys, Project control, coordinate systems and datums; Depth measuring techniquesmanual, single beam acoustic depth measurement, multiple transducer channel sweep systems for navaigation projects, acoustic multi-beam survey systems. Navigation project clearance and object detection; Airborne Lidar Surveying, Dredging Support survys, dredge measurement and payment volume computations, Contracted survey specifications and cost estimates.

NA50902

NA50802

DH50008

8

Cargo Handling in Ports

3 0 0 = 3 Credits

Chain and pulley blocks, span tackle arrangement in derricks – force diagram, union purchase of cargo handling; Cranes – different types, level luffing cranes, container handling cranes; container storage and handling in ships and ports; Floating cranes – arrangement and stability; Bulk cargo handling equipment – grabs, conveyor belts, automatic loading and unloading; Liquid cargo handling – centrifugal pumps, piping for cargo transportation, insulation for cryogenic cargo, oil jetty arrangements; Cargo movement on road ways and railways – port area, RORO ships and hinterland connection.

Engineering Economics

3 0 0 = 3 Credits

Time value of money, interest relationships, NPV and yield or IRR; Trade pattern, Chartering of ships, time, voyage and bareboat charter, Freight rate and its fluctuations, Conferences; Loans and repayments, Operating expenses, Overhead expenses; Investment and Return on Investment; Role of Total Quality Management.

CAD CAM In Ship Design & Production

3 0 0 = 3 Credits

Introduction; Engineering CAD systems; Analytical and parametric representation of curves; Interpolation techniques, control polygon techniques (Bezier, BSpline, NURBS); Ship curve design; Interrogation and fairing techniques for curves; surface representation, analytical and parametric representation of surfaces; Surface interpolation techniques, control polygon techniques(Bezier, BSpline, NURBS); Interrogation and fairing techniques for surfaces; Ship surface design- ruled surface, developable surface, low curvature surfaces.

Marine Machinery & Systems

3 0 0 = 3 Credits

Choice of Propulsion Systems – Gas turbines, steam turbines, diesel engines, electrical propulsion and combinations; Marine boilers – Oil fired, coal fired, nuclear; Power transmission system – Shafting system; HFO, MDO and LO storage, transfer and purification systems; FW and SW systems; Fire fighting and BW systems; Sludge control and oily water purification systems; Electrical load calculation, power generation and distribution systems; Cargo handling – dry break-bulk, unitized and bulk cargo, liquids in bulk, cryogenic liquids etc.; Pumps, piping and valves; Life saving and fire fighting systems; Steering and navigation systems; Anchoring and mooring systems.

DH50010

NA50008

NA50010

DH50012

Loads on Offshore Structures Wind Loads; Wave and Current Loads; Calculation based on Maximum base Shear and Overturning Moments; Design Wave heights and Spectral Definition; Hydrodynamic Coefficients and Marine growth; Fatigue Load Definition and Joint Probability distribution; Seismic Loads; Concept of Fixed Platform Jacket and Deck; Steel Tubular Member Design; Tubular Joint Design for Static and Cyclic Loads; Submarine Pipelines and Risers; Design against Accidental Loads (Fire, Blast and Collision).

Advanced Structural Analysis

Design of Offshore Structures

3 0 0 = 3 Credits

3 0 0 = 3 Credits

Classical and Numerical approaches to buckling of columns, beam-columns and frames, Torsional buckling, Plate buckling, Introduction to fracture mechanics, Stationary crack under static loading, Crack growth, Fatigue; FEM application to Structural Analysis.

Probabilistic nature of forces acting on a structure at sea, Simulation of probabilistic structural resistance, Methods for reliability assessment of structures – first order second moment method, advanced second moment method, reliability based structural design codes.

Computational Fluid Dynamics

0 0 3 = 1 Credits

Formulation, methodology and techniques of numerical solutions of potential and viscous flow problems in ocean engineering, boundary integral methods – application to radiation and diffraction problems, Finite difference and finite volume methods – grid generation, solution of free surface flows and Navier Stokes equations around a body in water, numerical flow simulation.

Optimisation Methods

3 0 0 = 3 Credits

Introduction, Linear programming, Non-linear programming, unconstrained and Constrained Optimisation, numerical optimisation techniques, Genetic Algorithm, Fuzzy logic and Neural networks, Swarm Optimisation techniques, Application of optimization to marine engineering problems.

DH50011

NA50012

NA50011

NA50013

Marine Management

DH50013

0 0 3 = 1 Credits

Queuing theory, Transportation problem, Inventory control, Material management, Supply chain management, ERP, PLM, Total quality management, Traffic Management, VTMS, Modeling & simulation techniques for cargo management.